
Efficient Attribute-based Data Access

in Astronomy Analysis

B. MA
1
, A. Shoshani

1
, A. Sim

1
, K. Wu

1
, Y. Byun

2
, J. Hahm

3
, M.-S. Shin

4

1
Lawrence Berkeley National Laboratory, USA

2
Yonsei University, Korea

3
Korea Institute of Science and Technology Information, Korea

4
University of Michigan, USA

Abstract - Large experiments and high-performance

computer models generate many petabytes of data. While Cloud
Computing systems may meet the needs for analyzing these
petabytes by harnessing the computing power of many
distributed computers, the key challenge in effectively utilizing
such a distributed system is the data management process,
including storage, indexing, searching, accessing, and
transferring data. Most analysis tasks perform computations on
a subset of a large data records satisfying some user specified
constraints on attribute (variable) values. This subsetting
procedure is extremely important in that it reduces the network
traffic to and from the cloud facilities. However, selected data
records often span many different data files, and extracting the
values out these files can be time-consuming especially if the
number of files is large. This work addresses this challenge of
working with a large number of files. We use a set of
astronomical data set as an example and use an efficient
database indexing technique, called FastBit, to significantly
speed up the subsetting and thus optimize network usage.
Overall, we aim to provide transparent and highly efficient
attribute-based data access to scientists through a web-based
Astronomy Data Analysis Portal. We will discuss the system
design, and options for managing an extremely large number of
files while minimizing network usage and latency.

Index Terms - Astronomy analysis, Cloud Computing,
fastbit, data search, astronomy data.

I. INTRODUCTION

Large experiments and high-precision simulations are
providing invaluable insight into scientific phenomena. A
well-known challenge in these scientific endeavors is the
mountain of data they produce; many experiments and
simulations are already producing multi-petabyte of data and
data volumes are growing exponentially. This data explosion
exist in nearly all fields of science, including astrophysics
and cosmology, high energy physics, material science,
climate modeling, fusion, and biology, to name a few. Many
of these analysis tasks require large computing capacity, and
in some cases, the computing power required for analysis is
as much as that needed for the original simulation that
produced the data.

Cloud Computing may satisfy the analysis requirements
by distributing the computational tasks. In many cases,
Cloud Computing systems are also the more cost-effective
solutions in comparison with traditional centralized

approaches. Sharing data across the Cloud Computing
facilities can be achieved through data transfers over high-
speed networks. However, the key bottleneck in effectively
utilizing Cloud Computing is usually the data management
process, including storage, indexing, searching, accessing,
and transferring the data. Scientific data records may have
an extremely large size, an extremely large file count, or both.
While there are various techniques for managing data
movement, a major issue is the amount of the data being
moved that is not necessary for the analysis. In distributed
data-intensive analysis environments, this problem can
significantly degrade the performance of analysis. In
particular, network transport latency, along with data access
latency, usually accounts for a substantial portion of time
required for cloud-based scientific analysis. Thus, it is
important to have methods that extract the necessary data
records at the source, before transferring the desired subsets
to the analysis facility.

Many analysis tasks perform computations on a subset of
data records selected based on the attributes data values. For
example, when analyzing an astronomy dataset, one might
want to plot a set of light curve for objects in a particular
patch of the sky. The data needed for this operation could be
retrieved from data records satisfying certain range
conditions on Right Ascension and Declination. This
subsetting procedure reduces the amount of data to be
transported to the Cloud Computing facilities and is therefore
critical to the overall effectiveness of the distributed analysis
system.

Selected data records often span many different data files.
The analysis programs must know which data files include
the selected records. Extracting the values out these files can
be time-consuming especially if the number of files is large.
In some cases, the selected data records have to be
reorganized such as clustering them based on the time stamps.
Even though such subsetting and reorganization functions are
frequently required, they are not well supported by current
scientific data management systems.

We describe the design and development of a generalized
attribute-based unified data access service that provides
transparent and highly efficient data-access mechanisms and
optimizes network usage by reducing the data transport load

at the source. This requires a high-level coordination of data
discovery, data selection, index generation, data access, and
data delivery. We use the system for the Astronomical data
analysis based on the cloud environment. Our approach is to
provide a general-purpose service framework that will enable
scientists to manage the data flows.

II. BACKGROUND

A. Astronomy Data Analysis

Astronomy analyses face the difficult challenge of
managing the distributed access to massive data sets. For
instance, the Sloan Digital Sky Survey (SDSS) Data Release
7 (DR7) [1] consists of 64TB of imaging and spectroscopic
data. The imaging data covers about 8423 square degrees of
"legacy" sky, with information on roughly 230 million
distinct photometric objects, and about 3240 square degrees
of SEGUE sky, with about 127 million distinct objects. The
spectroscopic data includes data from 1802 main survey
plates of 640 spectra each, and cover 8200 square degrees.
Another example of a large database is SuperWASP Data
Release 1 [2], which consists of about 120 billion data points
in 18 million unique light curves derived from 3.6 million
images. This takes up 5.9TB of disk space for the light
curves, and over 20TB for the raw images.

These are only two examples of many large databases
already available in the astronomy community. The size of
databases is certain to increase quite dramatically in the
coming years, in all areas of survey astronomy. In order to
maximize the science products from such huge databases,
often located in remote centralized data centers, it is of
utmost importance to provide users with a general tool,
which efficiently searches for subsets of desired data entries.

In addition to the increasing size of the data, there is also
a significant increase in the distance between data and
application scientists, due to the large international
collaboration where the massive amount of data is generated
or collected in a few centralize data repositories. The concept
of Cloud Computing has been adopted in astronomy research
for tackling the problem of the data analysis over massive
datasets. Although there are few examples of Cloud
Computing for this purpose, the effective usage of the Cloud
Computing has been proven in astronomy only if the relevant
data can be easily and quickly accessed by the computer
resources.

For this study, we chose the Northern Sky Variability
Survey (NSVS) [3,4] dataset, which contains light curves for
16 million objects with typically 60-400 measurements per
object. The NSVS is used by astronomers for analysis of
patterns in the night sky in search of rare and transient
astronomical events.

While this dataset takes about 100 GB of disk space, it is
divided into over 16 million files. The large number of files
has proven to be challenging for most file systems and
scientific data management systems. To reduce data
management complexity, these files are grouped by a
common attribute into 638 tar balls (each combining multiple
files with the TAR function), and seven key attributes of all
files are collected into a plain text catalog file. However,
searches were still far from optimized, particularly in the

handling of timestamps. Each NSVS observation contains a
timestamp and analysis tasks typically require data records
from specific time ranges, but the timestamps cannot easily
fit in the catalog file. Any query involving timestamps needs
to read and process all 16 million files at least once, making
such analysis tasks extremely time-consuming and even
more so if data post-processing and over-the-network data
transfer is involved. Our approach to resolve this issue is to
extend the NSVS catalog to include the time range of
observations in each file, thus enabling more fine-grained
search and selective data extraction/read from the dataset.
This approach not only filters the data and reduces the
amount of bytes delivered to end-users for the analysis, but
should significantly reduce the time needed for data access,
I/O operations, and network delivery. The Attribute-based
unified data access service provides such transparent and
highly efficient data-access.

B. Astronomy Data Cloud Portal

The StarCloud portal is a web-based service which
provides user interfaces for search and extraction of
astronomy data, as well as customized computing resources
for the data analysis through Cloud Computing. The portal
consists mainly of the data service and the analysis service.
In the data service, a user can have an access to various
astronomy datasets such as NSVS. It has an easy-to-use
interface, where a user can input search parameter values and
check the search results, then download the selected subset
of the data. In addition, a user can download the data subset
from the analysis computing resource as a tar ball using a
URL provided by the data service system. The StarCloud
data service became significantly more efficient owing to the
backend Attribute-based Unified Data Access Service.

The astronomical scientists need a variety of analysis
tools, including open source community-delivered software
and in-house programs for the analysis of astronomical data.
However, there is a large cost in money and manpower for
managing private computing clusters. It is still hard to use a
public cluster with such various needs of analysis software.
Cloud Computing can alleviate these issues by providing
private computing environment for analysis of large
scientific datasets in a cost-efficient manner.

The StarCloud analysis service provides various
astronomical tools with the Cloud Computing service. Users
can have a virtualized private computing cluster on demand,
which is customized with a specific operating system,
libraries and scientific computing software in order to run the
analysis on the data subset selected by the data service. They
can select an analysis tool from listed astronomical data
analysis tools on the portal, which is stored in virtual
machine images, then request a data analysis resource with
specific parameters, for example, the number of computing
nodes, memory size, storage size, and so on. The request is
delivered to the Virtual Cluster Service, which creates a
computing cluster configured by virtual machines. The
Virtual Cluster Service is a high-level tool in front of
OpenNebula, a widely-used cloud management software, to
create and manage virtual cluster instances, not just virtual
machine instances.

C. Challenges

The main goal of this case study is not just to efficiently
select the subset of light curve data for a given sky location
and for a given time range. Based on the timestamp attribute
of individual measurements, we further select data entries
sharing the same set of timestamps, i.e., observed at the exact
same time by the survey instrument. This sub-grouping is
very useful in identifying and estimating the significance of
systematic biases, which might have prevailed at the time of
the survey observations and have not been properly removed
by the original data analysis process. If this is the case, then
the apparent variability we see in the light curve data of a
particular astronomical source may not reflect the intrinsic
nature of the source. Such biases may also hide whatever
temporal variation the sky objects really have and could have
been detected by the survey.

The identification and removal of systematic bias is
called “de-trending” and recent successful examples are
given in references [8] and [9]. In order to run the de-
trending process, the light curve data has to be searched for a
subset of measurement entries that share the exact same
series of timestamps because only these subsets share the
same systematic and environmental biases that occurred at
the specific time of observations. De-trending is difficult for
a very large database because of the need to select the data
entries that can be correctly compared with each other. The
selection process can be extremely time consuming with
conventional approach as one needs to read through entire
light curve entries, comparing the timestamp of a
measurement entry with other entries for all other stars in
nearby sky locations.

Depending on the nature of the astronomical survey and
the intended science analysis with the database, there can be
several different sets of database challenges. We believe that
the present case study is an important representative
challenge for all astronomical time-series survey databases.

III. ATTRIBUTE-BASED UNIFIED DATA ACCESS SERVICE

 Searching and refining dataset efficiently for analysis
and moving the selected data reliably to the analysis
computing facilities are difficult tasks. The Attribute-based
Unified Data Access Service (AUDAS) will accommodate
and support such complex tasks. Clients will only need to
define a dataset of interest using range conditions on
variables that are familiar to them and specify the data
attributes for the analysis.

In this NSVS case study, we 1) indexed the light curve
observation timestamps so that data subsetting does not
require reading the entire NSVS dataset, 2) reduced the
searching time from O(n) time to O(log N) time using an
indexing tool, called FastBit, and 3) optimized the data
access process through a series of benchmarks that simulate a
production-environment.

A. Service Framework and API

The Attributed-based Unified Data Access Service
includes four components: Data Selection, Data Index, Data
Access, and Data Delivery. When an analysis component
contacts the Astronomical Data Analysis Portal, the data
discovery mechanism first searches for relevant datasets
through the metadata catalog provided by the user
communities. The qualified datasets are further refined based
on the selection criteria and the data index in Data Selection
and Data Index components. These refined subsets are
extracted and delivered to the client analysis component
through the Data Access and Data Delivery components.
Each component may be accessed separately based on the
client needs. Figure 1 shows the overall design of the system
and the interface between the components. The Data Access
service API is the means of communication between clients
and the service components as well as between the individual
components of the service framework. To allow maximum
flexibility, a RESTful web service is implemented for the
APIs.

B. Data Index

For attribute-based data selection, the Data Index
component generates indexes for the dataset. The goals of
the Data Index component are to provide fast search across
the dataset, and to allow for fine-grained data selection
process in order to eliminate the data not needed for an
analysis, thus significantly reducing the time needed for
network and I/O operations. The Data Index component has
a flexible design, which can select index generation either
dynamically or statically. In most cases, the index is created
for the entire dataset once, and is used for data selection as
long as the dataset does not change. The dynamic indexing
technique reduces the amount of index generation time,
especially when datasets are very large and are dynamically
growing. In this paper, the original CSV-based dataset is
used. The search performance is described in the next section.

FastBit is used in the Data Index component in this case
study. FastBit [5] is an efficient database indexing technique
to speed up data search with conditions on attribute variables.
It implements compressed bitmap index techniques for
attribute-based searching operations using an SQL-like query
system, and was designed to take advantage of the read-only
nature of scientific data to provide more efficient search
operations. FastBit has been demonstrated in numerous US
DoE scientific applications as able to significantly speed up
attribute-based searching operations. The storage cost of the
index is reasonable. In this case study, the original plain-text
catalog file takes about 1.3GB, and the FastBit indexes take
up 2.2GB.

Work has been done to also use another tool, called
FastQuery as the Data Index component. The recently
developed FastQuery [6] search system, based on FastBit,
allows users to quickly search and access HDF5 and NetCDF
files without the need to convert the user data into the native
FastBit format.

C. Data Selection

As the recipient of data search results, the Data Selection
component is the entry point to the Attribute-based Unified
Data Access Service. The role of this component is to collect
attribute information based on the selection specification
from the clients, validate the attributes, and select the data
and filtering information from the metadata search results.
The selection information is then returned to the client for
the next steps in the data access. The selection specification
can be generalized so that different datasets and analysis
tools can be supported in the future. In our case study, SQL-
like queries are provided to FastBit in order to search the
NSVS according to specified attribute values.

D. Data Access

The Data Access component extracts files from the
dataset based on the selection produced from the Data
Selection component. Data filtering and post-processing can
be customized for the dataset, and the final results are
packaged into a designated archive to be delivered to the
clients for the next steps in data analysis. Extensibility is
built into the data filtering mechanism so that different data
formats and analysis can be supported. In this case study, the
appropriate files are extracted from the NSVS dataset based
on the Data Selection results, and repackaged into a tar ball.
Because this process is I/O intensive, a file system directory
was mounted in memory (tmpfs) as the staging area for
extraction, post-processing, and repackaging in order to
reduce the processing time.

E. Data Delivery

The Data Delivery component provides a transparent way
to access data based on supported transfer protocols. The
Data Delivery component will coordinate the movement of
the selected dataset to the destination, using the desired
transfer protocol. As the initial scope of the project, HTTP-
based data download is supported for the selected subsets to
be transferred to the local destination. The extensibility is
built into the component so that it would evolve with future
networking infrastructures, supporting anonymous FTP,
GridFTP [7] or SCP/SFTP.

F. AUDAS and Cloud-based Astronomy Data Analysis

Usage of the Attribute-based Unified Data Access
Service (AUDAS) consists of two steps: general search
based on the query string, and further filtering within the first
search based on the time stamps. When a user submits an
SQL-like query string to view and retrieve a subset of the
NSVS data, the web service performs FastBit queries on the
NSVS index in the backend, and retrieves, post-processes,
and re-packages the data for users to download. When a user
further specifies a time range to filter their initial search,
AUDAS reads through every file of the pre-specified data
subset, filters in light curve observations that fit in the time
range, formats the output, and writes to a new set of files.
Resulting data files are downloaded as a tar package file
when requested.

A RESTful API has also been provided to the Data
Access component of AUDAS to enable scriptable and

Figure 1: Overall architecture of the Attribute-based Unified Data Access Service

customizable data search and acquisition. Users enter the
entire SQL-like query string and time ranges if desired as the
fields to the URL query, and automatically download a tar
ball as a REST response. The RESTful API ensures a clean
and flexible separation of components of AUDAS.

IV. RESULTS

A. Data Indexing

To enable more efficient use of the catalog from NSVS,
we expand it to include the time range and then build a set of
FastBit indexes. To build the FastBit indexes, we convert
the text version of the catalog file into the binary format used
by FastBit first and then use a FastBit command line tool to
generate the appropriate bitmap indexes based on the
characteristics of the data. On the set of NSVS data,
converting the catalog file from text format to FastBit binary
format took about 166 seconds, and generating the bitmap
indexes took about 48 seconds. Since these are one-time
operations, they do not factor at all into search time.

B. Data Searching

FastBit search was benchmarked against a line-by-line
search of the NSVS plain-text catalog. This full catalog
search required an average of 138s, while the same search

using FastBit indexes took a mere average of 0.121s, a
speedup of over 1100. On a cold start of the FastBit program,
in which the large bitmaps have not been cached to memory
yet, startup is only around 4x slower than average, about
0.513s, but still is hundreds of times faster than the linear
string search.

C. Data Access – Tarfile-based

The Data Access process is as follows: files are extracted
from tar balls of the dataset, we call the source in the
following discussion, based on results from a search onto a
temporary location, we call the staging area. Additional
filters and post-processors are applied to transform the data
into the format useful for the analysis, and the final files are
repackaged into a tar archive, and placed into a location, we
call the destination, to await delivery to the end users. In our
case study, the combination of file systems on which the
source, staging, and destination are located was subject to
variation in order to assess the I/O efficiency of the file
systems for use with the NSVS dataset. To simplify the
benchmarking process neither filters, nor post-processors
were applied. Single threading was used in both the
benchmarked extraction and repacking scenarios. The RAID
and SSD benchmarks were performed on a private server
with no other user on the system, while the GPFS and Lustre

Figure 2: Data access performance (RAID as source)

benchmarks were performed on the Hopper system at
NERSC, where there are always tens if not hundreds other
users on the system.

From all benchmark scenarios, the actual bottleneck in
the Data Access process is not in the results-packaging stage
but in the data-extraction; we have shown that data-
extraction consistently requires approximately an order of
magnitude more time than the packaging of results (figures 2
to 5). The results also indicate that, for this case study, not
only does using tmpfs as the staging area greatly improves
both the extraction and repackaging times regardless of the
file systems used as the source and destination, but it also
scales much better linearly with respect to the number of
files to be accessed. In terms of file extraction from datasets,
it is shown that SSD is the best option for both the reading
and writing of many small files (figure 3). Distributed file
systems that are optimized for reading and transferring a

small number of large files in cluster computing, such as
GPFS and Lustre, have been shown to be at a disadvantage
in both reading and writing, compared to a simple networked
file system such as NFS (figures 4, 5). These benchmarks,
however, are raw timings and do not account for the data
transfer latencies due to fluctuations in network traffic in the
case of the benchmarks on the various distributed/networked
file systems. It can be concluded, however, that, given
background network latencies, local file systems such as
RAID or SSD provide much more consistent I/O rates.

Figure 3: Data access performance (SSD as source)

Figure 5: Data access performance (GPFS as source)

Figure 4: Data access performance (Lustre as source)

D. Data Access – HDF5-based

The Data Access flow for HDF5 is similar to that for the
tar ball data-archiving method. In the HDF5 data
organization scheme, light curve files are packaged into
HDF5 files as arrays, or variables in HDF5 terminology. A
subset of light curve files that was organized into a specified
tar ball is now a set of variables in the corresponding HDF5
file; thus, the NSVS dataset consists of 638 HDF5 archives.
Similar file system benchmarkings were carried out, and to
ensure accurate, reproducible timings, a small C++ program

was written that called FastQuery’s simple HDF5 access API
to read data out of the HDF5 files. Because FastQuery is
build on FastBit technology, the speed of FastQuery search
was not of main concern as it is projected to be on same
order as FastBit search, so only FastQuery data extraction
benchmarks were carried out. Again, to simplify the
benchmarking process neither filters, nor post-processors
were applied, and only single threading was used. Both
benchmarks were performed on the Hopper system at
NERSC.

Figure 6: HDF5-based data access performance benchmark

Figure 7: HDF5-based data access performance

Based on the benchmark results, the choice of file system
for staging (tmpfs or not) had little, if any, impact on
improving HDF5 extraction times (figure 7). This is
probably because only one file (the HDF5 archive) is being
read at a time when multiple light curve datasets are being
extracted from it, whereas with the tar ball archive, multiple
files are being read from and written to disk. The second
observation to note is that on the whole, HDF5 data
extraction on average takes much longer time than data
extraction from tar balls. The majority of the time is actually
spent on opening and reading in the HDF5 files by
FastQuery; opening and loading an HDF5 file into memory
costs an average of 4.76 and 7.64 seconds for HDF5 archives
stored on GPFS and Lustre file systems, respectively, while
reading out individual variables of an HDF5 archive took a
mere average of 1.73E-04 and 6.52E-04 seconds for HDF5
archives stored on GPFS and Lustre file systems,
respectively (figure 6). This is because upon opening the
HDF5 file, FastQuery caches the archive for later use.
Because the NSVS dataset consists of 638 HDF5 archives,
one Data Access procedure may require opening many
HDF5 archives, which significantly increases extraction time.
One solution to address this problem is to merge the dataset
into a smaller number of HDF5 archives to reduce the
number of HDF5 file open calls, but its benefits and tradeoffs,
especially in caching and memory usage, have not been
thoroughly assessed, and will be explored in future work.

V. SUMMARY

In this paper, we have described the design of the
Attribute-based Unified Data Access Service and the
performance of the data access for an astronomy data set.
The purpose of this case study is to investigate methods to
reduce data to be transported across networks in order to
optimize network transport and minimize network latencies
in cloud-based scientific data analyses.

This study shows that FastBit is a much better alternative
database indexing method to indexing through catalog text
file. FastBit has proven to be very scalable for datasets with
high file set cardinalities. Under a Cloud Computing
environment that is supported by reasonably high-throughput
networking, with FastBit in place for dataset querying, the
bottleneck in any data analysis thus lies in data access
process. In our case study, the extraction of data from the
NSVS dataset takes on average two orders of magnitude
more time than the search operation, and the repackaging and
compressing of resulting takes on average one order of
magnitude more time than the search operation. A standard
source-staging-destination model was recognized for the data
access in the Cloud Computing environment, in which a
subset of the dataset located at a source is extracted to the
staging area, post-processed, and repackaged into a
destination folder for network delivery. Studies indicate that
using tmpfs as the file system for the staging area resulted in
a substantial overall data access time reduction. Benchmarks
with high-performance distributed file systems such as GPFS
and Lustre indicate that they are far from optimal in
scenarios such as this case study, in which many small files
are being moved around, because they are file systems

optimized for reading and moving very large files. Both tar
ball-based and HDF5-based benchmarks using GPFS file
systems gave less “stable” timing measurements, with much
more I/O time variability. Whether this is because the GPFS
system in our experiment was mounted on a very busy node
or because this is a side effect of GPFS’s design and
implementation remains to be ascertained.

From the benchmark results, it can be inferred that tmpfs
is both the ideal choice of file system in general for reading
and writing small files, with SSD coming slightly behind in
both. While RAID performs better than NFS for writes, it
appears that NFS only slightly outperforms RAID in read
rates, although both are outperformed in both aspects by SSD.

On the HDF5 benchmarks, it was demonstrated that the
majority of the HDF5 reading time was spent on loading the
HDF5 file, not retrieving the data within the HDF5 archive.

Because an HDF5 archive appears as one large file in the
file system, as opposed to many files in the case of tarfiles,
there are significantly fewer system calls for opening files,
both for reading and writing, and so the data extraction times
are largely independent of the type of file system the source
dataset was mounted on. Furthermore, in the case of using
HDF5 archives, utilizing tmpfs as staging provided little, if
any, speed improvement. Because of the time used to open
and cache in HDF5 archives to memory, HDF5 data
extraction on the whole is slower than tarfile-based data
extraction. In the case of the NSVS dataset, merging the
HDF5 files into a smaller file set may be a viable option to
avoid this, but requires re-indexing and redefining the
parameters for the Field_ID attribute, and there could
potentially be tradeoffs with cache and memory usage.

Future work involves further refinement of the data
access process to ease the load on the data delivery (network
transport) process. Since the aforementioned benchmarks
only ran on single-threaded mode, multi-threading will be
explored in future work. Preliminary multithreading
benchmarks have been shown to increase tarfile-based data
extraction rate by at least 2-3x. As both FastBit and
FastQuery support multithreading mode, future work will
entail assessing possible improvements with multithreaded
querying.

The current HDF5 benchmarks used FastQuery to open
into the dataset to retrieve the data, not query the dataset.
Future work will include loading only the catalog index file
for data querying by FastQuery, and use the HDF5 library
directly to access the bulk of the dataset. Finally, alternative
data packaging formats will be tried, such as netCDF, which
is also supported by FastQuery, or other compression formats
that might enable either smaller files or faster decompression
times, such as 7z or BZIP.

ACKNOWLEDGMENTS

This work was funded by Korea Institute of Science and
Technology Information under the agreement C12022 at
KISTI and WF008977 at LBNL. This work also used
resources of the Lawrence Berkeley National Laboratory and
National Energy Research Scientific Computing Center, by
the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under

contracts DE-AC02-05CH11231. Y.I.B. acknowledges the
support of the National Research Foundation of Korea
through grant 2012-0009094.

REFERENCES

[1] Sloan Digital Sky Survey Data Release 7:
http://www.sdss.org/dr7/

[2] SuperWASP public data archive Data Release 1:
http://www.wasp.le.ac.uk/public/

[3] Northern Sky Variability Survey (NSVS),
http://skydot.lanl.gov/nsvs/nsvs.php

[4] "Northern Sky Variability Survey: Public Data Release",
P. R. Woźniak et al. 2004 The Astronomical Journal,
127 2436, doi:10.1086/382719

[5] “FastBit: Interactively Searching Massive Data”, K. Wu,
S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. C.
Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann, W.
Koegler, J. Lauret, J. Meredith, P. Messmer, E. Otoo,
V. Perevoztchikov, A. Poskanzer, Prabhat, O. Rubel, A.
Shoshani, A. Sim, K. Stockinger, G. Weber, and W.M.
Zhang, In Proc. SciDAC 2009.

[6] "Parallel Index and Query for Large Scale Data
Analysis", J. Chou, K. Wu, O. Rubel, M. Howison, J.
Qiang, Prabhat, B. Austin, E. W. Bethel, R. D. Ryne
and A. Shoshani, IEEE Supercomputing Conference
(SC), November 2011.

[7] “GridFTP: Protocol Extensions to FTP for the Grid”, W.
Allcock, et all. Global Grid Forum, GFD.020, April,
2003.

[8] “Detrending time series for astronomical variability
surveys”, D.W. Kim, P. Protopapas, C. Alcock, Y.I.
Byun, and F.B. Bianco, 2009, Monthly Notices of the
Royal Astronomical Society, 397, 558

[9] “Improved Time-Series Photometry and Calibration
Method for Non-Crowded Fields : MMT Megacam and
HAT-South Experiences”, S.W. Chang, Y.I. Byun, and
D.W.Kim, 2012New Horizons in Time-Domain
Astronomy, Proceedings of the International
Astronomical Union, IAU Symposium, Volume 285, p.
291-293

